Skip to contents

Natural log transformation... showing proportional change explicitly

Usage

propDiff_trans(n = 7, base = exp(1), ...)

Arguments

n

Scalar, target number of breaks

base

a positive or complex number: the base with respect to which logarithms are computed. Defaults to \(e\)=exp(1).

...

additional arguments passed to label_propDiff

See also

log_breaks

Other transformations: divMult_trans(), nel_trans()

Examples

dat<-data.frame(x = 1:10, y = exp(-2:7))
dat %>% ggplot2::ggplot(ggplot2::aes(x, y)) +
    ggplot2::geom_point() +
    ggplot2::scale_y_continuous(
      transform = propDiff_trans(base = 2)
      , sec.axis = ggplot2::sec_axis(
          labels = function(x) {x}
          , transform = ~.
          , breaks = c(0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000)
          , name = "original scale"
        )
      ) +
    ggplot2::labs(y = "propDiff scale") +
    ggplot2::geom_hline(yintercept = 1, linewidth = 0.2)


dat %>% ggplot2::ggplot(ggplot2::aes(x, exp(seq(-1, 0.8, 0.2)))) +
 ggplot2::geom_point() +
 ggplot2::scale_y_continuous(
   transform = propDiff_trans()
   , sec.axis = ggplot2::sec_axis(
     labels = function(x) {x}
     , transform = ~.
     , breaks = c(0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)
     , name = "original scale"
   )
 ) +
 ggplot2::labs(y = "propDiff scale") +
 ggplot2::geom_hline(yintercept = 1, linewidth = 0.2)